Chemical structure and physical properties of diamond-like amorphous carbon films prepared by magnetron sputtering

Author:

Cho N-H.,Krishnan K. M.,Veirs D. K.,Rubin M. D.,Hopper C. B.,Bhushan B.,Bogy D. B.

Abstract

Thin films of amorphous carbon (a–C) and amorphous hydrogenated carbon (a–C:H) were prepared using magnetron sputtering of a graphite target. The chemical structures of the films were characterized using electron energy loss spectroscopy (EELS) and Raman spectroscopy. The mass density, hardness, residual stress, optical band gap, and electrical resistivity were determined, and their relation to the film's chemical structure are discussed. It was found that the graphitic component increases with increasing sputtering power density. This is accompanied by a decrease in the electrical resistivity, optical band gap, mass density, and hardness. Increasing the hydrogen content in the sputtering gas mixture results in decreasing hardness (14 GPa to 3 GPa) and mass density, and increasing optical band gap and electrical resistivity. The variation in the physical properties and chemical structures of these films can be explained in terms of the changes in the volume of sp2-bonded clusters in the a–C films and changes in the termination of the graphitic clusters and sp3-bonded networks by hydrogen in the a–C:H films.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3