Ultrathin Protection Layer via Rapid Sputtering Strategy for Stable Aqueous Zinc Ion Batteries

Author:

Zhao Fangjia1,Feng Jianrui1,Dong Haobo1,Chen Ruwei1,Munshi Tasnim2,Scowen Ian2,Guan Shaoliang34,Miao Yue‐E5,Liu Tianxi6,Parkin Ivan P.1,He Guanjie1ORCID

Affiliation:

1. Department of Chemistry University College London 20 Gordon Street London WC1H 0AJ UK

2. School of Chemistry University of Lincoln Brayford Pool Lincoln LN6 7TS UK

3. Maxwell Centre, Cavendish Laboratory University of Cambridge Cambridge CB3 0HE UK

4. Department of Materials Science and Metallurgy University of Cambridge Cambridge CB3 0FS UK

5. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China

6. School of Chemical and Material Engineering Jiangnan University No. 1800, Lihu Avenue Wuxi 214122 China

Abstract

AbstractSurface side reactions and time‐consuming modification methods hinder the practical application of zinc‐ion batteries. This study introduces an ultrathin protection layer for the Zn anode via a rapid sputtering method. The dopants on the CN10@Zn anode create surface dipoles and local variations in charge distribution, facilitating zinc ion migration to pyrrolic nitrogen dopant sites with reduced adsorption barriers. Additionally, hydroxyl oxygen dopants enhance the hydrophilicity of the sputtering layer, forming a strong adhesion with the zinc anode and improving ion accessibility. This results in dense nucleation sites for uniform zinc deposition. Consequently, the sputtered layer achieves a Coulombic efficiency of 99.8% over 2,700 cycles in Cu||Zn cells and a lifespan of up to 2,100 h in zinc symmetric cells. When paired with Na0.65Mn2O4 cathodes, the sputtered layer retains 89% capacity over 1,000 cycles at 1 A g−1. This study presents a promising method for rapidly fabricating ultrathin electrode materials.

Funder

Engineering and Physical Sciences Research Council

Royal Society

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3