Metal Oxide Aerogels: A New Horizon for Stabilizing Anodes in Rechargeable Zinc Metal Batteries

Author:

Shi Zhenhai1,Chen Suli1,Xu Zijian1,Liu Zhanming1,Guo Junhong1,Yin Jian2,Xu Pengwu1,Zhang Nan1,Zhang Wenli3,Alshareef Husam N.2ORCID,Liu Tianxi1

Affiliation:

1. The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering International Joint Research Laboratory for Nano Energy Composites Jiangnan University Wuxi 214122 P. R. China

2. Materials Science and Engineering Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Saudi Arabia

3. Guangdong Provincial Key Laboratory of Plant Resources Biorefinery School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China

Abstract

AbstractDendritic deposition and side reactions have been long‐standing interfacial challenges of Zn anode, which have prevented the development of practical aqueous zinc‐based batteries. Herein, an oxygen vacancy‐rich CeO2 aerogel (VAG‐Ce) interface layer that simultaneously integrates Zn2+ selectivity, porosity, and is lightweight is reported as a new strategy to achieve dendrite‐free and corrosion‐free Zn anodes. The well‐defined and uniform nanochannels of VAG‐Ce can act as ion sieves that redistribute Zn2+ at the Zn anode surface by regulating Zn2+ flux, leading to uniform Zn deposition and significantly suppressing dendrite growth. Importantly, the abundant oxygen vacancies exposed on VAG‐Ce surface can strongly capture SO42−, forming a negatively charged layer that can attract Zn2+ and accelerate the Zn2+ migration kinetics, while the subsequent repulsion of additional anions can effectively suppress the generation of (Zn4SO4(OH)6·xH2O) byproducts, thereby realizing very stable Zn anodes. Consequently, VAG‐Ce modified Zn anode (VAG‐Ce@Zn) enables a long‐term lifespan over 4000 h at 4 mA cm−2 and a record‐high cycle life of 1200 h is achieved under an ultrahigh 85% Zn utilization at 8 mA cm−2, which enables excellent capacity retention and cycling performance of VAG@Zn/MnO2 cells. This work contributes an innovative design concept by introducing oxygen vacancy‐rich aerogels and provides a new horizon for stabilizing Zn anode for large‐scale energy storage.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3