Unlocking the Effect of Chain Length and Terminal Group on Ethylene Glycol Ether Family Toward Advanced Aqueous Electrolytes

Author:

Xiao Kang12,Yang Liming1,Peng Mengke1,Jiang Xudong1,Hu Ting2,Yuan Kai1,Chen Yiwang13ORCID

Affiliation:

1. College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China

2. School of Physics and Materials Science Nanchang University 999 Xuefu Avenue Nanchang 330031 China

3. National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China

Abstract

AbstractConstructing high‐performance hybrid electrolyte is important to advanced aqueous electrochemical energy storage devices. However, due to the lack of in‐depth understanding of how the molecule structures of cosolvent additives influence the properties of electrolytes significantly impeded the development of hybrid electrolytes. Herein, a series of hybrid electrolytes are prepared by using ethylene glycol ether with different chain lengths and terminal groups as additives. The optimized 2 m LiTFSI‐90%DDm hybrid electrolyte prepared from diethylene glycol dimethyl ether (DDm) molecule showcases excellent comprehensive performance and significantly enhances the operating voltage of supercapacitors (SCs) to 2.5 V by suppressing the activity of water. Moreover, the SC with 2 m LiTFSI‐90%DDm hybrid electrolyte supplies a long‐term cycling life of 50 000 cycles at 1 A g−1 with 92.3% capacitance retention as well as excellent low temperature (−40 ºC) cycling performance (10 000 times at 0.2 A g−1). Universally, Zn//polyaniline full cell with 2 m Zn(OTf)2‐90%DDm electrolyte manifests outstanding cycling performance in terms of 77.9% capacity retention after 2,000 cycles and a dendrite‐free Zn anode. This work inspires new thinking of developing advanced hybrid electrolytes by cosolvent molecule design toward high‐performance energy storage devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Jiangxi Normal University

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3