Affiliation:
1. Beijing Key Laboratory of Environmental Science and Engineering School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
2. Yangtze Delta Region Academy of Beijing Institute of Technology Jiaxing 314019 P. R. China
Abstract
AbstractAqueous zinc‐ion batteries (ZIBs) with metallic Zn anodes have emerged as promising candidates for large‐scale energy storage systems due to their inherent safety and competitive capacity. However, challenges of Zn anodes, including dendrite growth and side reactions, impede the commercialization of ZIBs. The regulation of the Zn/electrolyte interphase is a feasible method to achieve high‐performance ZIBs with prolonged lifespan and high reversibility. Considering the as‐made artificial interphase is the result of a combination of protection materials, protection mechanisms, and construction techniques, this review comprehensively summarizes the recent progress of interphase modulation and provides a systematic guideline for constructing ideal artificial layers. In addition to revealing the entanglement relationship between the failure behaviors of Zn anodes and timely concluding the emerging protection mechanisms for stable Zn/electrolyte interphase, this review also evaluates the constructing techniques in regard of commercialization, including engineering workflow, strength, shortcoming, applicable materials, and protection effect, aiming to pave the way to practical application. Finally, this review presents noteworthy points of ideal artificial layer. It is expected that this review can enlighten researchers to not only explore ideal interphases of Zn anodes for practical application, but also design other metal anodes in aqueous batteries with similar failure behaviors.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献