Ultra low κ PECVD Porogen Approach: Matrix Precursors Comparison and Porogen Removal Treatment Study

Author:

Favennec L.,Jousseaume V.,Rouessac V.,Durand J.,Passemard G.

Abstract

AbstractThe introduction of new dielectrics into silicon chip interconnection technology is necessary to increase electrical performance. Sub-65nm technologies need κ values below 2.5 and the main way to reduce the dielectric constant is to introduce porosity. This work reports results concerning a two steps PECVD porogen approach to perform Ultra Low κ (κ <2.5). The first step is an hybrid material deposition: i.e. an a-SiOC:H matrix containing organic sacrificial inclusions (porogen phase). In the second step, the porogen is removed by a suitable curing to generate porosity. Two siloxane precursors (decamethylcyclopentasiloxane and diethoxymethylsilane) were evaluated as matrix precursors. Their influences, as well as O2 addition in plasma gas feed, in terms of cross-linking and incorporation were evaluated by FTIR analysis. Thermal anneal and UV treatment (thermally assisted) were evaluated as a curing second step. It allows to better understand this critical step which combines porogen removal and material cross-linking. By optimizing deposition and curing parameters, κ value lower than 2.4 were obtained.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chemistry in Interconnects;Chemistry in Microelectronics;2013-03-14

2. Ultra-Low-k by CVD: Deposition and Curing;Advanced Interconnects for ULSI Technology;2012-02-17

3. Low Dielectric Constant Materials;Chemical Reviews;2009-12-04

4. Spin-coated and PECVD low dielectric constant porous organosilicate films studied by 1D and 2D solid-state NMR;Physical Chemistry Chemical Physics;2009

5. New approaches in the design of ceramic and hybrid membranes;Journal of Membrane Science;2008-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3