Author:
Fu J.W.,Yang Y.S.,Guo J.J.,Ma J.C.,Tong W.H.
Abstract
Formation and evolution details of a two-phase coupled microstructure in AISI 304 stainless steel are studied by quenching method during directional solidification. Results show that the coupled growth microstructure, which is composed of thin lath-like ferrite (δ) and austenite (γ), crystallizes first in the form of colony from the melt. As solidification develops, the retained liquid transforms into austenite gradually. On cooling, solid-state transformation from ferrite to austenite results in the disappearance of part thinner ferrites and the final two-phase coupled microstructure is formed after the solid-state transformation. The formation mechanism of the two-phase coupled microstructure is analyzed based on the nucleation and constitutional undercooling criterion (NCU) before steady-state growth of each phase is reached.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献