Author:
LIU KUN, ,YU PING,KOU SINDO
Abstract
The susceptibility of austenitic, ferritic, and duplex stain-less steels to solidification cracking was evaluated by the new Transverse Motion Weldability (TMW) test. The focus was on austenitic stainless steels. 304L and 316L were least susceptible, 321 was significantly more susceptible, and 310 was much more susceptible. However, some 321 welds were even less susceptible than 304L welds. These 321 welds were found to have much finer grains to better resist solidification cracking. Quenching 321 during welding revealed spontaneous grain refining could occur by heterogeneous nucleation. For 304L, 316L, and 310, a new explanation for the susceptibility was proposed based on the continuity of the liquid between columnar dendrites; a discontinuous, isolated liquid allows bonding between dendrites to occur early to better resist cracking. In 304L and 316L, the dendrite-boundary liquid was discontinuous and isolated, as revealed by quenching. The liquid was likely depleted by both fast back diffusion into -dendrites (body-centered cubic) and the L + + reaction, which consumed L while forming . In 310, however, the dendrites were separated by a continuous liquid that prevented early bonding between them. Back diffusion into -dendrites (face-centered cubic) was much slower, and the L + + reaction formed little . Quenching also revealed skeletal/lacy formed in 304L and 316L well after solidification ended; thus, skeletal/lacy did not resist solidification cracking, as had been widely believed for decades. The TMW test further demonstrated that both more sulfur and slower welding can increase susceptibility.
Subject
Metals and Alloys,Mechanical Engineering,Mechanics of Materials
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献