Author:
Song Jaewon,Kim Hye Ryeong,Park Jaehoo,Jeong Seehwa,Hwang Cheol Seong
Abstract
The oxidation behavior of sputtered TiAlN thin-film barrier layers was studied by cross-section transmission electron microscopy. Bare 100-nm-thick TiAlN films on SiO2/Si began to oxidize from the surface after annealing in air for 10 min from about 550 °C. Annealing at 700 °C oxidized half of the layer thickness. A 100-nm-thick Pt overlayer on the barrier layer retarded macroscopic oxidation at 650 °C. However, a 10-nm-thick Pt overlayer accelerated oxidation as a result of the catalytic dissociation of O2 molecules to form O atoms, which oxidized the barrier layer at 550 °C to the same extent as without the thin Pt overlayer at 650 °C. The effects of other thin metal overlayers, such as Ru and Ir, were also investigated. Ru and Ir did not accelerate TiAlN oxidation due to the absence of catalytic activity.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献