Understanding nanoindentation unloading curves

Author:

Pharr G. M.,Bolshakov A.

Abstract

Experiments have shown that nanoindentation unloading curves obtained with Berkovich triangular pyramidal indenters are usually welldescribed by the power-law relation P = α(hhf)m, where hf is the final depth after complete unloading and α and m are material constants. However, the power-law exponent is not fixed at an integral value, as would be the case for elastic contact by a conical indenter (m = 2) or a flat circular punch (m = 1), but varies from material to material in the range m = 1.2–1.6. A simple model is developed based on observations from finite element simulations of indentation of elastic–plastic materials by a rigid cone that provides a physical explanation for the behavior. The model, which is based on the concept of an indenter with an “effective shape” whose geometry is determined by the shape of the plastic hardness impression formed during indentation, provides a means by which the material constants in the power law relation can be related to more fundamental material properties such as the elastic modulus and hardness. Simple arguments are presented from which the effective indenter shape can be derived from the pressure distribution under the indenter.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 402 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3