Evaluation of plasma process-induced mechanical property change in SiN films using a cyclic nanoindentation technique

Author:

Goya TakahiroORCID,Urabe KeiichiroORCID,Eriguchi KojiORCID

Abstract

Abstract Recently, plasma process-induced damage (PID) has garnered significant interest in the design of thin dielectric films implemented in semiconductor devices. Silicon nitride (SiN) films, a material of interest in strain engineering, are found to suffer from PID because they are exposed to various plasmas during device manufacturing processes. Only a limited amount of experimental evidence is available at present regarding plasma-induced mechanical property changes of SiN films. In this study, we investigated the mechanical property change in SiN and SiO2 films using a cyclic nanoindentation technique. We focused on the contact stiffness (S) as the principal mechanical property parameter. Firstly, a single loading/unloading test confirmed an increase in S after Ar and He plasma exposures. Subsequently, we examined the time-dependent features of damaged SiN and SiO2 films under cyclic loading/unloading. From the cyclic test, an increase in S was seen with the number of loading/unloading cycles (N) for both SiN and SiO2 films. A larger increase in S was observed for the damaged SiN, while no significant increase was seen for the damaged SiO2 films. The observed increase in S and its time dependence are attributed to the strain developed by the created defects (e.g. interstitial species) and the reconstruction and stabilization of plasma-damaged Si–N networks with created defects, respectively. The time-dependent S analysis under cyclic loading/unloading is useful for evaluating the effects of PID on the mechanical properties of thin films.

Funder

JST SPRING

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3