Formation of Three Red-Shift Emissions in Heavily Germanium-Doped P-Type GaAs Grown By MBE

Author:

Makita Y.,Yamada A.,Shibata H.,Asakura H.,Ohnishi N.,Beye A. C.,Mayer K. M.,Kutsuwada N.

Abstract

AbstractMolecular beam epitaxy (MBE) of Ge-doped GaAs was made, in which As4 to Ga flux ratio :γ and Ge concentration :[Ge] were used as growth parameters. Photoluminescence (PL) spectra at 2K for slightly Ge-doped GaAs revealed that for γ =1 the emission of excitons bound to neutral Ge acceptors (A°,X) was the dominant one. With increasing γ ,(A°,X) was found to be steeply suppressed and at around γ=1.1, (A°,X) was totally quenched. For γ higher than 1.4, the emission of excitons bound at neutral Ge donors (D°,X) was gradually enhanced and for γ =11, (D°,X) became the principal one. Through van der Pauw measurements, samples with [Ge] around 1×1017cm-3 presented type conversion at around γ=1.7. In this series, the sample with γ =1.0 indicated a strong specific emission, [ g-g], which is formed just below (A°,X) and exhibited a strong energy shift towards lower energy sides (red shift) with increasing [Ge]. [g-g] was theoretically attributed to the pairs between excited-state acceptors. Since [g-g] is known to be easily quenched by small amount of donors, the formation of predominant [g-g] for γ =1 assures that very low-compensated p-type GaAs were grown by using this typically am-photeric impurity. We fabricated a series of p-type Ge-doped GaAs by keeping γ =1 in which the net hole concentration, │ NA-ND │ as high as 1×1020cm-3 was attained. We found four emissions which exhibited significant energy shifts with increasing │ NA-ND │ . From │ NA-ND │ ~1×1016 cm-3, [g-g] begins to appear as a dominant emission and at │ NA-ND │ ~ 1×1017 cm-3, another red shift emission, [g-g]2 begins to be formed parralelly on the higher energy side of [g-g]. It is interesting to note that both [g-g] and [g-g]2 seem to be totally quenched by the further increase of [Ge]. The emission due to band to Ge acceptor,(e,Ge) does not change its central energy until [Ge]= 5×-1018cm-3 and for larger [Ge] it turned into a new broad emission,[g-g]β showing a steep red energy shift. [g-g]α was formed on the higher energy side of (e,Ge) and indicated a systematic blue energy shift with growing [Ge] larger than 1×1019cm-3. [g-g]α was theoretically explained to be the emission due to the pairs between ground-state acceptors.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3