In-Situ Observation Of Aln Formation During Nitridation Of Sapphire By Ultrahigh Vacuum Transmission Electron Microscopy

Author:

Yeadon M.,Marshall M. T.,Hamdani F.,Pekin S.,Morkoc H.,Gibson J. M.

Abstract

AbstractUsing a novel ultrahigh vacuum transmission electron microscope (UHV TEM) with insitu molecular beam epitaxy capability we have studied the nitridation of (0001) sapphire upon exposure to ammonia. Atomically flat sapphire surfaces for the experiments were obtained by high temperature annealing. Subsequent exposure to ammonia flow at 950°C led to the successful synthesis of epitaxial AIN; the films were characterized in-situ using TEM. Complimentary ex-situ atomic force microscopy (AFM) was also performed in order to characterize the surface morphology before and after nitridation.The experiments indicate that AIN grows by a 3D island growth mechanism. Electron diffraction patterns suggest an abrupt AIN/sapphire interface with no evidence of the formation of Al–O–N compounds. The rate limiting step in the nitridation reaction appears to be the diffusion of nitrogen and oxygen species between the free surface of the growing AIN film and the reaction interface. It is inferred from kinetic measurements that diffusion of these species occurs along the boundaries between coalescing AIN islands.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3