Thin Ni-Silicides for Low Resistance Contacts and Growth of Thin Crystalline Si Layers

Author:

Guliants Elena A.,Anderson Wayne A.

Abstract

ABSTRACTA new technological method of producing the Ni silicide with metal-like conductivity by deposition of a thin Si film over an ultrathin Ni prelayer at low temperature has been developed. The interaction of a metallic Ni with the Si atoms provided by the deposition source leads to the formation of the Ni-rich silicide phases immediately after the onset of Si deposition. Continued Si deposition results in the transformation of the Ni-rich silicide phases into the more Si-rich ones which implies that the phase composition is controlled by the Ni-to-Si concentration ratio rather than temperature. After Ni is completely consumed, the Si grains grow epitaxially on the disilicide crystals. The silicide layer has been studied in detail with respect to both the dynamics of the silicide growth and the electrical properties. The Ni silicide resistivity was found to be 2×10-4Ωcm. The technique has advantages in two respects: it provides a high crystallinity Si film and allows fabrication of an ohmic contact directly on the substrate thus leaving the front surface of the film available for the formation of the active device junction.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3