Undercooling of Liquid Germanium

Author:

Devaud G.,Turnbull D.

Abstract

AbstractSmall liquid germanium (ℓ-Ge) droplets (0.3–0.5mm diameter) have been undercooled in a B2O3 flux a maximum of 415 ± 20°C below Tm before recalescence. Although the droplets undercooled to temperatures well below the temperature expected for metastable equilibrium with amorphous Ge, Taℓ, the solidified structures were always polycrystalline. There was no evidence of a continuous liquid-to-amorphous transition at or below Taℓ. The nucleation frequency was calculated to be ˜8 × 106 /cm 3-sec at the maximum undercooling. This should be an upper limit to the homogeneous nucleation frequency of the crystal phase since we did not establish that the nucleation was homogeneous in our experiments. However, this limiting I for Ge indicates that homogeneous nucleation of the crystal or amorphous phase would not become appreciable in nsec laser pulsing experiments until ℓ-Ge is undercooled to well below Taℓ. The structure of solidified Ge and Ge/Sn alloy droplets indicates that dendritic growth does not occur in Ge until the liquid is undercooled at least 300°C, and in Ge/Sn until the liquid is undercooled at least 250°C. Greater undercoolings lead to increased dendritic breakup, which results in grain refinement in the final structure.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Surface Nanostructures and Speciation on Undercooling for Low-Temperature Solder Alloys;ACS Applied Nano Materials;2022-02-24

2. Stabilization of Undercooled Metals via Passivating Oxide Layers;Angewandte Chemie International Edition;2021-02-04

3. Stabilization of Undercooled Metals via Passivating Oxide Layers;Angewandte Chemie;2021-02-04

4. Complexity and Opportunities in Liquid Metal Surface Oxides;Chemistry of Materials;2020-09-14

5. Germanium multiphase equation of state;Journal of Physics: Conference Series;2014-05-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3