Formation and Characterization of Spe Grown Ultra-Thin Cobalt Disilicide Film

Author:

Qu Xin-Ping,Ru Guo-Ping,Li Bing-Zong,Detavernier C.,Meirhaeghe R L. Van,Cardon F.

Abstract

AbstractUltra-thin epitaxial CoSi2 films formed by Co(3∼5nm)/Ti(1 nm)/Si(100) and Co(3∼5nm)/Si(lnm)/Ti(Inm)/Si are studied. The multilayers are deposited by ion-beam sputtering. Rapid thermal annealing (RTA) is used for silicidation. XRD, RBS, TEM, AFM, four-point probe, I-V and C-V measurements are carried out for characterization. The XRD spectra show the CoSi2 film formed by Co/Ti/Si or Co/Si/Ti/Si solid phase epitaxy has, epitaxial characteristic. XTEM shows that the film is continuous. RBS/Channeling shows that the formed CoSi2 has sharp interface with a minimum channeling yield of Co signal of 40%. AFM shows that the surface of ultra-thin CoSi2 film is smooth with a roughness of nearly 0.7 nm. The Rs∼T relationship shows that the CoSi2 films formed by Co/Si/Ti/Si reaction have the best thermal stability (stable up to 900°C). Those formed by Co/Ti/Si reaction are stable up to 850°C, while those formed by Co/Si reaction are only stable up to 750°C. By fitting the experimental I-V and C-V curves of the epitaxial CoSi2/Si Schottky diodes, barrier heights of around 0.6 eV and close to unity ideality factors are obtained.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3