Author:
Renlund Gary M.,Prochazka Svante,Doremus Robert H.
Abstract
Silicone polymers were pyrolyzed to form silicon oxycarbides that contained only silicon, oxygen, and carbon. The starting polymers were mainly methyl trichlorosilane with a small amount of dimethyl dichlorosilane. NMR showed that the polymers had a silicon-oxygen backbone with branching and ring units. When the polymer was heated in hydrogen, toluene and isopropyl alcohol, used in production of the polymer, were given off in the temperature range 150 °C to 500 °C. Substantial decomposition of the polymer itself began only above about 700°by evolution of methane. The network of silicon-oxygen bonds and silicon-carbon bonds did not react and was preserved; the silicon-carbon bonds were linked into the silicon-oxygen network. The silicon oxycarbide was stable above 1000 °C, showing no dimensional changes above this temperature. The interior of the silicon oxycarbide was at very low effective oxygen pressure because oxygen diffused slowly in it. There was also a protective layer of silicon dioxide on the surface of the silicon oxycarbide.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
211 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献