Oxidation performance and limitations of additively manufactured SiC/Si─O─C composites at elevated temperatures

Author:

Ridley Mackenzie J.1ORCID,Lance Michael J.1,Aguirre Trevor G.12,Cramer Corson L.2

Affiliation:

1. Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge Tennessee USA

2. Manufacturing Science Division Oak Ridge National Laboratory Oak Ridge Tennessee USA

Abstract

AbstractSiC preforms were infiltrated with polycarbosiloxane preceramic polymer to create low‐cost SiC—SixOyCz matrix composites for possible high temperature application. The effect of specimen annealing conditions on the steam and air oxidation resistance was analyzed. Air exposures from 900–1500°C showed stability of the SixOyCz matrix phase with moderate oxidation resistance. After 900°C exposures, oxidation of the composite is primarily limited to the matrix phase, and only at 1200 and 1500°C was SiC consumption visualized. Steam cycle exposures at 1200°C resulted in rapid linear oxidation of the composites with induced specimen swelling from volume expansion associated with internal oxidation. Specimens annealed in argon were found to be the most oxidation resistant due to increased matrix crystallinity and carbon retention. The results of this work were used to develop clear strategies for improving the high‐temperature properties of SiC—SixOyCz composites.

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3