Pt Hillock Formation and Decay

Author:

Summerfelt Scott R.,Kotecki Dave,Kingon Angus,Al-Shareef H.N.

Abstract

ABSTRACTThe formation of Pt hillocks during high temperature processing is a problem when using Pt as a bottom electrode for high dielectric constant materials. The hillock height is frequently larger than the dielectric thickness, degrading the leakage current of the device. In this work, Pt was deposited by electron beam evaporation on in-situ formed 40 nm ZrO2 coated SiO2 / Si substrates. The samples were then annealed at temperatures between 400°C and 700°C for times ranging from 2 min to 40 min. The surface roughness was measured by atomic force microscopy (AFM). The surface was characterized using Ra, RMS and Zmax over 5 μm × 5μm regions. Zmax is sensitive to hillock formation and Ra is sensitive to changes in general surface roughness. Analysis of Zmax indicates that 100 nm Pt / ZrO2 deposited at 315°C forms hillocks above 450°C during initial heatup. Subsequently, the hillocks decay for temperatures of 600°C and above such that they are almost gone after a 30 min air anneal. In-situ wafer stress measurements of Pt / ZrO2 were performed in O2 at temperatures up to 650°C. The Pt relaxes above 500°C in O2.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3