Fabrication of Polycrystalline Si Thin Film for Solar Cells

Author:

Tanaka M.,Tsuge S.,Kiyama S.,Tsuda S.,Nakano S.

Abstract

AbstractThe a-Si/poly-Si thin film tandem solar cell is a promising candidate for low-cost solar cells. We have conducted R&D on poly-Si thin film using the Solid Phase Crystallization (SPC) method from amorphous silicon (a-Si). To improve the film quality of SPC poly-Si, we have developed a new SPC method called the partial doping method. This method features two stacked starting a-Si layers, a P-doped layer and a non-doped layer. Nucleation occurs in the P-doped layer, and the non-doped layer is the crystal growth layer. For the nucleation layer, we developed a Si film with a unique structure, which features relatively large crystallites (-1000A) embedded in a matrix of amorphous tissue. By combining these technologies, a conversion efficiency of 9.2% was obtained for poly-Si thin-film solar cells. For further improvement in the conversion efficiency, based on the concept of “independent control of nucleation and crystal growth”, it is necessary to combine the best fabrication methods for each layer. A high conversion efficiency of more than 12% was found possible by using the CVD method and a new back surface reflection structure.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3