“Barrierless” Misfit Dislocation Nucleation in SiGe/Si Strained Layer Epitaxy

Author:

Perovic D.D.,Houghton D.C.

Abstract

ABSTRACTThe study of the critical thickness/strain phenomenon inherent in metastable, layered heterostructures has led to the development of several models which describe elastic strain relaxation. Hitherto, the nucleation of misfit dislocations required for coherency breakdown is the least well understood aspect of strain relaxation, due to the paucity of experimental data. Moreover, existing theoretical calculations predict relatively large activation energy barriers (>10 eV) for misfit dislocation nucleation in relatively low misfit (<2%) systems. In this work it will be shown that the nucleation of misfit dislocations can occur spontaneously demonstrating a vanishingly small activation energy barrier. Specifically, experimental studies of a wide range of GexSi1−x/Si (x< 0.5) hetero-structures, grown by MBE and CVD techniques, have provided quantitative data from bulk specimens on the observed misfit dislocation nucleation rate and activation energy using large-area diagnostic techniques (eg. chemical etching/Nomarski microscopy). In parallel, the strained layer microstructure was studied in detail using crosssectional and plan-view electron microscopy in order to identify a new dislocation nucleation mechanism, the ‘double half-loop’ source. From the combined macroscopic and microscopic analyses, a theoretical treatment has been developed based on nucleation stress and energy criteria which predicts a “barrierless” nucleation process exists even at low misfits (< 1%). Accordingly, the observed misfit dislocation nucleation event has been found both experimentally and theoretically to be rate-controlled solely by Peierls barrier dependent, glide-activated processes with activation energies of ∼2 eV.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3