Abstract
The kinetics of silicide growth are classified into three different categories: (a) diffusion controlled, (b) nucleation controlled, (c) others (reaction rate controlled). These are analyzed with the aim of understanding both the phenomenology of growth and the specific atomic mechanisms of phase formation. Diffusion-controlled growth is discussed with respect to the Nernst-Einstein equation. Stress relaxation is considered as a possible cause of reaction-rate control. The relative merits of two different types of marker experiments are compared. A few silicides are discussed in terms of what can be inferred about diffusion mechanisms. The competition between reaction-rate and diffusion control phenomena is shown to have specific effects on the sequence of phase formation; it is also related to the formation of some amorphous compounds. Reactions between silicon and alloyed metal films are used to illustrate the respective influences of mobility and driving force factors on the kinetics of silicide growth; they can also be used to underline the dominance of nucleation over diffusion in some silicide formation processes.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
429 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献