Atomistic Understanding of a Single Gated Dopant Atom in a MOSFET

Author:

Lansbergen Gabriel,Rahman Rajib,Wellard Cameron,Caro Jaap,Collaert Nadine,Biesemans Serge,Klimeck Gerhard,Hollenberg Lloyd,Rogge Sven

Abstract

ABSTRACTCurrent semiconductor devices have been scaled to such dimensions that we need take an atomistic approach to understand their characteristics. The atomistic nature of these devices provides us with a tool to study the physics of very small ensembles of dopants right up to the limit of a single atom. Control and understanding of a dopants wavefunction and its coupling to the environment in a nanostructure could proof a key ingredient for device technology beyond-CMOS. Here, we will discuss the eigenlevels and transport characteristics a single gated As donor. The donor is incorporated in the channel of wrap-around gate transistors (FinFETs). The measured level spectrum is shown to consist of levels associated with the donors Coulomb potential, levels associated with a triangular well at the gate interface and hybridized combinations of the two. The level spectrum of this system can be well described by a NEMO-3D model, which is based on a numerical tight-binding approximation.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference14 articles.

1. Development of a Nanoelectronic 3-D (NEMO 3-D) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots;Klimeck;Computer Modeling in Engineering and Science,2002

2. Dopant local bonding and electrical activity near Si(001)-oxide interfaces

3. Introduction to Mesoscopic Electron Transport

4. Subthreshold channels at the edges of nanoscale triple-gate silicon transistors

5. Charge State Control and Relaxation in an Atomically Doped Silicon Device

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3