Author:
Shin J. C.,Choi W. J.,Han I. K.,Park Y. J.,Lee J. I.,Kim E. K.,Kim H. J.,Choi J. W.
Abstract
ABSTRACTWe have studied the change of the spectral response in a quantum well infrared photodetector (QWIP) by using the impurity-free vacancy disordering (IFVD) to change the bandgap of the GaAs/AlGaAs multiple quantum well absorption layer. IFVD process has been carried out with PECVD-grown SiO2 capping on the MOCVD-grown QWIP structure, whose absorption region consists of 25 periods of 3.6nm thick Si-doped GaAs well and 50nm thick Al0.24Ga0.76As barrier. The PL peak of MQW decreased with the increase of annealing temperature and time from 802 nm to 700 nm at 15 K. The fabricated QWIP whose absorption region was intermixed at 850 °C by IFVD technique showed the maximum change in spectral response from 8 to 10 um when compared to a QWIP without intermixing. This result implies that the intermixing technology can be used to make multicolor QWIP without growing multiple IR absorption regions.
Publisher
Springer Science and Business Media LLC