Current Transformer Saturation Detection Method Based on Artificial Neural Network

Author:

Rumiantsev Yu. V.1

Affiliation:

1. Belarusian National Technical University

Abstract

When current transformer is saturated, mainly due to the presence of an exponentially decaying DC component in the fault current, its secondary current has a distinctive distorted waveform which significantly differs from its primary (true) waveform. It leads to an underestimation of the secondary current value calculated by the relay protection compared to its true value. Thus, in its turn, results in trip time delay or even in a relay protection devices operation failure, since its settings and algorithms are calculated and designed on the assumption that the secondary current waveform is sinusoidal and proportional to the primary. And since, when using classical electromagnetic current transformer, it is impossible to exclude the possibility of its saturation, the detection of such abnormal condition is an urgent technical problem. The article proposes to use an artificial neural network for this purpose, which, together with the traditional method of saturation detection based on adjacent secondary current samples comparison, allows implementing a fast and reliable current transformer saturation detector. The article details the stages of the practical implementation of such an artificial neural network. The MATLAB-Simulink environment was used for assess the proposed saturation detector operation. The experiments that had been performed confirmed that proposed method provides fast and accurate saturation detection within the wide range of the power system and current transformer parameters change.

Publisher

Belarusian National Technical University

Subject

Energy Engineering and Power Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Reference42 articles.

1. Rumiantsev Yu. V., Romaniuk F. A. (2021) An Artificial Neural Network Developed in MATLAB-Simulink for Reconstruction a Distorted Secondary Current Waveform. Part 1. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 64 (6), 479–491 (in Russian). https://doi.org/10.21122/1029-7448-2021-64-6-479-491

2. Rumiantsev Yu. V., Romaniuk F. A. (2022) An Artificial Neural Network Developed in MATLAB-Simulink for Reconstruction a Distorted Secondary Current Waveform. Part 2. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 65 (1), 5–21 (in Russian). https://doi.org/10.21122/1029-7448-2022-65-1-5-21

3. Rebizant W., Hayder T., Schiel L. (2004) Prediction of CT Saturation Period for Differential Relay Adaptation Purposes. International Conference on Advanced Power System Automation and Protection, 1–6.

4. Rumiantsev Yu. V. (2016) A Comprehensive Model for the Power Transformer Digital Differential Protection Functioning Research. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 59 (3), 203–224 (in Russian). https://doi.org/10.21122/1029-7448-2016-59-3-203-224

5. Rumiantsev Yu. V., Romaniuk F. A., Rumiantsev V. Yu., Novash I. V. (2018). Digital Current Measurement Element for Operation during Current Transformer Severe Saturation. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 61 (6), 483–493 (in Russian). https://doi.org/10.21122/1029-7448-2018-61-6-483-493

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3