Machine learning-based improvement of an online rheumatology referral and triage system

Author:

Knitza Johannes,Janousek Lena,Kluge Felix,von der Decken Cay Benedikt,Kleinert Stefan,Vorbrüggen Wolfgang,Kleyer Arnd,Simon David,Hueber Axel J.,Muehlensiepen Felix,Vuillerme Nicolas,Schett Georg,Eskofier Bjoern M.,Welcker Martin,Bartz-Bazzanella Peter

Abstract

IntroductionRheport is an online rheumatology referral system allowing automatic appointment triaging of new rheumatology patient referrals according to the respective probability of an inflammatory rheumatic disease (IRD). Previous research reported that Rheport was well accepted among IRD patients. Its accuracy was, however, limited, currently being based on an expert-based weighted sum score. This study aimed to evaluate whether machine learning (ML) models could improve this limited accuracy.Materials and methodsData from a national rheumatology registry (RHADAR) was used to train and test nine different ML models to correctly classify IRD patients. Diagnostic performance was compared of ML models and the current algorithm was compared using the area under the receiver operating curve (AUROC). Feature importance was investigated using shapley additive explanation (SHAP).ResultsA complete data set of 2265 patients was used to train and test ML models. 30.5% of patients were diagnosed with an IRD, 69.3% were female. The diagnostic accuracy of the current Rheport algorithm (AUROC of 0.534) could be improved with all ML models, (AUROC ranging between 0.630 and 0.737). Targeting a sensitivity of 90%, the logistic regression model could double current specificity (17% vs. 33%). Finger joint pain, inflammatory marker levels, psoriasis, symptom duration and female sex were the five most important features of the best performing logistic regression model for IRD classification.ConclusionIn summary, ML could improve the accuracy of a currently used rheumatology online referral system. Including further laboratory parameters and enabling individual feature importance adaption could increase accuracy and lead to broader usage.

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3