Deep Learning Approach for Prediction of Critical Temperature of Superconductor Materials Described by Chemical Formulas

Author:

Viatkin Dmitry,Garcia-Zapirain Begonya,Méndez-Zorrilla Amaia,Zakharov Maxim

Abstract

This paper proposes a novel neural network architecture and its ensembles to predict the critical superconductivity temperature of materials based on their chemical formula. The research describes the methods and processes of extracting data from the chemical formula and preparing these extracted data for use in neural network training using TensorFlow. In our approach, recurrent neural networks are used including long short-term memory layers and neural networks based on one-dimensional convolution layers for data analysis. The proposed model is an ensemble of pre-trained neural network architectures for the prediction of the critical temperature of superconductors based on their chemical formula. The architecture of seven pre-trained neural networks is based on the long short-term memory layers and convolution layers. In the final ensemble, six neural networks are used: one network based on LSTM and four based on convolutional neural networks, and one embedding ensemble of convolution neural networks. LSTM neural network and convolution neural network were trained in 300 epochs. Ensembles of models were trained in 20 epochs. All neural networks are trained in two stages. At both stages, the optimizer Adam was used. In the first stage, training was carried out by the function of losses Mean Absolute Error (MAE) with the value of optimizer learning rate equal to 0.001. In the second stage, the previously trained model was trained by the function of losses Mean Squared Error (MSE) with a learning rate equal to 0.0001. The final ensemble is trained with a learning rate equal to 0.00001. The final ensemble model has the following accuracy values: MAE is 4.068, MSE is 67.272, and the coefficient of determination (R2) is 0.923. The final model can predict the critical temperature for the chemistry formula with an accuracy of 4.068°.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Reference30 articles.

1. Predicting the Critical Temperature of Superconductors with XGBoost;Abdulkadir;ICAIAME,2019

2. A dynamic ensemble learning algorithm for neural networks;Alam;Neural Comput. Applic,2019

3. Superconductivity in Medicine;Alonso;Rev. Accl. Sci. Tech.,2012

4. Are high-temperature superconductors exotic?;Bonn;Nat. Phys.,2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3