Prediction of the Critical Temperature of Superconductors Based on Two-Layer Feature Selection and the Optuna-Stacking Ensemble Learning Model
Author:
Affiliation:
1. School of Mechanical and Electrical Engineering, Shihezi University, Shihezi832003, China
2. Key Laboratory of Modern Agricultural Machinery, Shihezi University, Shihezi832003, China
Funder
National New Material Production and Application Demonstration Platform Construction Project
Key Laboratory of the Modern Agricultural Machinery
Publisher
American Chemical Society (ACS)
Subject
General Chemical Engineering,General Chemistry
Link
https://pubs.acs.org/doi/pdf/10.1021/acsomega.2c06324
Reference39 articles.
1. Design and characteristics study of a 1 MW class superconducting motor for small-ship propulsions
2. Stator Design and Performance of Superconducting Motors for Aerospace Electric Propulsion Systems
3. Gradiometers based on superconducting quantum interference device for nondestructive testing
4. Exergetic analysis of reverse Brayton cryocooler with different turbine arrangements for HTS power cables
5. Computational Prediction of Critical Temperatures of Superconductors Based on Convolutional Gradient Boosting Decision Trees
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Explainable machine learning-based fractional vegetation cover inversion and performance optimization – A case study of an alpine grassland on the Qinghai-Tibet Plateau;Ecological Informatics;2024-09
2. Hypertuned temporal fusion transformer for multi-horizon time series forecasting of dam level in hydroelectric power plants;International Journal of Electrical Power & Energy Systems;2024-06
3. Predictive modeling of critical temperatures in magnesium compounds using transfer learning;Journal of Magnesium and Alloys;2024-04
4. Leveraging Ensemble Structures to Elucidate the Impact of Factors That Influence the Quality of Ultra-High Performance Concrete;2023 IEEE Symposium Series on Computational Intelligence (SSCI);2023-12-05
5. MIC-SHAP: An ensemble feature selection method for materials machine learning;Materials Today Communications;2023-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3