Estimation of inorganic crystal densities using gradient boosted trees

Author:

Zhao Jesse

Abstract

Density is a fundamental material property that can be used to determine a variety of other properties and the material’s feasibility for various applications, such as with energetic materials. However, current methods for determining density require significant resource investment, are computationally expensive, or lack accuracy. We used the properties of roughly ∼15,000 inorganic crystals to develop a highly accurate machine learning algorithm that can predict density. Our algorithm takes in the desired crystal’s chemical formula and generates 249 predictors from online materials databases, which are fed into a gradient boosted trees model. It exhibits a strong predictive power with an R2 of ∼99%.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Reference26 articles.

1. Permutation importance: A corrected feature importance measure;Altmann;Bioinformatics,2010

2. Bond valences—A simple structural model for inorganic chemistry;Brown;Chem. Soc. Rev.,1978

3. Crystallography and databases;Bruno;Data Sci. J.,2017

4. XGBoost: A scalable tree boosting system;Chen,2016

5. Greedy function approximation: A gradient boosting machine;Friedman;Ann. Stat.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3