Conductive, Anti-Corrosion, Self-Healing Smart Coating Technology Incorporating Graphene-Based Nanocomposite Matrix

Author:

Benavides-Guerrero Jaime,Banerjee Debika,Gedamu Dawit,Gerlein Luis Felipe,Cloutier Sylvain G.

Abstract

Chromate conversion coatings have been in service for decades providing robust corrosion protection to a wide variety of aluminum alloys. However, it is also known that anti-corrosive coatings containing Cr6+ contributes to DNA damage, cause cancer and are not environmentally friendly. Consequently, regulatory restrictions over the use Cr6+ were established to mitigate the environmental damage and health problems. To answer to this hurdle and to meet the emergent need for environmentally friendly anti-corrosive coatings, we have successfully developed an innovative coating that combines anti-corrosive, low electrical resistance, and self-healing properties. First, we present two different coatings, that aim to display low electrical resistance properties: one containing only graphene and the other containing Zn nanoparticles and graphene. Confocal laser imaging and SEM microscopy was used to observe the morphology of the coatings. The electrical resistance was measured using the 4-wire connection Kelvin method. We compare the anticorrosive response for both coatings under neutral salt spray test (NSSt). Raman spectroscopy was performed before and after to understand the effect of NSSt corrosive species on the coatings. Then, we select the coating with lower electrical resistance, and we program on it a self-healing mechanism to boost its life service. Finally cyclic voltammetry is performed to confirm the excellent blocking properties of the tested coatings. All the coatings presented in this work are applied on aluminum AA 2024T351 and the optimal spray parameters for nanofillers dispersion are obtained. Our findings show great potential for preventing corrosion and compatibility with fully automated large-scale applications in different fields such as aerospace, automotive, construction, submarines and many more.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advancing Corrosion Protection;Advances in Chemical and Materials Engineering;2024-07-19

2. A systematic review on smart coatings for automotive applications;SAE Technical Paper Series;2024-01-08

3. Uncovering intelligent self-healing coating: Synthesis strategies, performance, and evaluation techniques – A review;International Journal of Corrosion and Scale Inhibition;2023-12-24

4. Review on aviation intelligent self-healing anti-corrosion coating;Anti-Corrosion Methods and Materials;2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3