Abstract
An inorganic–organic coating based on glycidyl-functionalized silica and zirconia was synthesized by sol-gel technology to protect three types of AlMgSi (6XXX series) alloys against corrosion in aerospace applications. Different parameters such as the solid content, the organic/inorganic ratio of the sols and the deposition conditions were studied with the aim to achieve a tradeoff between the corrosion protection, antistatic performance and low vacuum-induced outgassing. Those parameters directly influence the thickness and the density of the coatings, and therefore the barrier effect against corrosion and the contact electrical resistance, which are affected in opposite ways. To obtain a low contact electrical resistance, silver nanowires (NW) with a high aspect ratio were loaded in the sol-gel matrix with the aim to create a conductive path through the hybrid coating with a low concentration of NWs. The coatings were adapted for AA6063, AA6061 and AA6082, and they all showed an outstanding anti-corrosion performance in different artificial weathering tests, whereas electrochemical impedance spectroscopy permitted the identification of the most critical parameters affecting water uptake. An antistatic performance was demonstrated by the low contact electrical resistance of the coated AA6061 and AA6063 alloys, although the incorporation of NWs showed a detrimental effect on the corrosion protection compared with the unloaded coating.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献