Gallium-incorporated TiO2 thin films by atomic layer deposition for future electronic devices

Author:

Sun Qingxuan,Lin Yingzhen,Han Chaoya,Yang Ze,Li Ying,Zeng Yuping,Yang Weifeng,Zhang Jie

Abstract

Titanium dioxide (TiO2) with advantages including abundance in earth, non-toxicity, high chemical stability, surface hydrophobicity in dark, and extremely high permittivity could be highly promising for advanced electronics. However, the thermal stability and low bandgap (Eg) of TiO2 pose a big challenge for TiO2 to be used as dielectric, which could be resolved by doping with other metal cations. In this work, we studied the impact of gallium incorporation on electrical and material characteristics of TiO2 thin films. These TiO2 and TiXGaO films with thickness of 15 nm were derived by atomic layer deposition (ALD) and then annealed in O2 ambient at 500°C, where the levels of Ga incorporation were tuned by the cycle ratio (X) of TiO2 to that of Ga2O3 during ALD growth. Both thin film transistors (TFTs) using TiXGaO (TiO2) thin films as the channel and metal-oxide semiconductor capacitors (MOSCAPs) using TiXGaO (TiO2) thin films as the dielectric were fabricated to unravel the impact of Ga incorporation on electrical properties of TiO2 thin films. It is found that the Ga incorporation reduces the conductivity of TiO2 thin films significantly. Pure TiO2 thin films could be the ideal channel material for TFTs with excellent switching behaviors whereas Ga-incorporated TiO2 thin films could be the dielectric material for MOSCAPs with good insulating properties. The leakage current and dielectric constant (k) value are also found to be decreased with the increased Ga content in TiXGaO/Si MOSCAPs. Additionally, the density of interface trap (Dit) between TiXGaO and Si were extracted by multi-frequency conductance method, where a “U-shape” trap profile with similar level of Dit values can be observed for TiXGaO MOSCAPs with varying Ga contents. Material characterizations show that the Ga incorporation destabilizes the crystallization and enlarges the bandgap (Eg) of TiO2 while maintaining a smooth surface. Interestingly, Ga incorporation is found to decrease the overall oxygen content and introduce more oxygen-related defects in the film. As a result, the reduction of leakage current upon Ga incorporation in MOSCAPs could be explained by amorphization of the film and enlarged band offset to Si rather than oxygen defect passivation. These Ga-incorporated TiO2 films may found promising usage in future electronic device applications such as trench capacitors in dynamic random-access memory, where the emerging high-k dielectrics with low leakage currents and high thermal stability are demanded.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3