Tunable, reconfigurable, and programmable acoustic metasurfaces: A review

Author:

Zabihi Ali,Ellouzi Chadi,Shen Chen

Abstract

The advent of acoustic metasurfaces (AMs), which are the two-dimensional equivalents of metamaterials, has opened up new possibilities in wave manipulation using acoustically thin structures. Through the interaction between the acoustic waves and the subwavelength scattering, AMs exhibit versatile capabilities to control acoustic wave propagation such as by steering, focusing, and absorption. In recent years, this vibrant field has expanded to include tunable, reconfigurable, and programmable control to further expand the capacity of AMs. This paper reviews recent developments in AMs and summarizes the fundamental approaches for achieving tunable control, namely, by mechanical tuning, active control, and the use of field-responsive materials. An overview of basic concepts in each category is first presented, followed by a discussion of their applications and details about their performance. The review concludes with the outlook for future directions in this exciting field.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Archimedean spiral channel-based acoustic metasurfaces suppressing wide-band low-frequency noise at a deep subwavelength;Materials & Design;2024-02

2. Sound absorption of space-coiled metamaterials with soft walls;International Journal of Mechanical Sciences;2024-01

3. Engineering metalenses for planar optics and acoustics;Materials Today Physics;2023-12

4. Editorial: Acoustic and mechanical metamaterials for various applications - volume II;Frontiers in Materials;2023-11-29

5. Bistable Origami-Inspired 1-bit Coding Acoustic Metasurfaces for Reconfigurable Beam Scanning;2023 Seventeenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials);2023-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3