Acoustic Properties of Surfaces Covered by Multipole Resonators

Author:

Kanev Nikolay1ORCID

Affiliation:

1. Power Engineering Department, Bauman Moscow State Technical University, 105005 Moscow, Russia

Abstract

Different types of resonators are used to create acoustic metamaterials and metasurfaces. Recent studies focused on the use of multiple resonators of the dipole, quadrupole, octupole, and even hexadecapole types. This paper considers the theory of an acoustic metasurface, which is a flat surface with a periodic arrangement of multipole resonators. The sound field reflected by the metasurface is determined. If the distance between the resonators is less than half the wavelength of the incident plane wave, the far field can be described by a reflection coefficient that depends on the angle of incidence. This allows us to characterize the acoustic properties of the metasurface by a homogenized boundary condition, which is a high-order tangential impedance boundary condition. The tangential impedance depending on the multipole order of the resonators is introduced. In addition, we analyze the sound absorption properties of these metasurfaces, which are a critical factor in determining their performance. The paper presents a theoretical model for the subwavelength case that accounts for the multipole orders of resonators and their impact on sound absorption. The maximum absorption coefficient for a diffuse sound field, as well as the optimal value for the homogenized impedance, are calculated for arbitrary multipole orders. The examples of the multipole resonators, which can be made from a set of Helmholtz resonators or membrane resonators, are discussed as well.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3