Fluid Driven Membrane Actuation for Reconfigurable Acoustic Manipulation

Author:

Choi Christabel1ORCID,Hardwick James1ORCID,Bansal Shubhi1ORCID,Subramanian Sriram1ORCID

Affiliation:

1. Department of Computer Science Faculty of Engineering University College London London WC1E 6BT U. K.

Abstract

AbstractAcoustic metamaterials based on out‐of‐plane actuation can flexibly reconfigure arrayed unit cells on demand, to shape sound fields for applications such as beam formation or holography. However, implementing active reconfiguration on the millimeter‐scale is challenging, due to the lack of suitable actuation methods. Besides electronic complexity, current methods suffer from limited actuation range (sub‐millimeter), and discrete steps inhibit smooth sound modulation. Here, a novel fluid‐driven approach for continuous out‐of‐plane actuation is presented. A three dimensionally (3D)‐printed fluidic chip is integrated with an elastomeric membrane, and selective inflation of membrane sections actuates acoustic reflector unit cells according to their shape and position. The compact device enables displacements >5 mm without coupling mechanisms or external power. It is experimentally demonstrate single‐channel and multi‐channel prototypes, including an ultrasonic metasurface built for controllable acoustic focusing at five different locations. The fluidic chips are monolithically printed via digital light processing without internal support material, and the membranes are fabricated by accessible and cost‐effective spacer‐based fabrication. The methods are reproducible and eliminate complex processes (e.g., adhesion of layers) commonly associated with multi‐layered micro/milli fluidic devices. The outlined approaches and concepts in this work can be applied beyond the field of metamaterials, such as for visual displays, or tactile devices.

Funder

European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3