Spatiotemporal Variability of Microplastics in the Eastern Baltic Sea

Author:

Mishra Arun,Buhhalko Natalja,Lind Kati,Lips Inga,Liblik Taavi,Väli Germo,Lips Urmas

Abstract

Microplastic (MP) pollution is present in all aquatic environments and is gaining critical concern. We have conducted sea surface MP monitoring with a Manta trawl at 16 sampling stations in the eastern Baltic Sea in 2016–2020. The concentrations varied from 0.01 to 2.45 counts/m3 (0.002–0.43 counts/m2), and the mean was 0.49 counts/m3 (0.08 counts/m2). The fibers and fragments had, on average, an approximately equal share in the samples. Correlation between the concentration of fibers and fragments was higher near the land and weaker further offshore. The following spatial patterns were revealed: higher mean values were detected in the Baltic Proper (0.65 counts/m3) (0.11 counts/m2) and the Gulf of Finland (0.46–0.65) (0.08–0.11) and lower values were detected in the Gulf of Riga (0.33) (0.06) and Väinameri Archipelago Sea (0.11) (0.02). The difference between the latter three sub-basins and the meridional gradient in the Gulf of Riga can likely be explained by the degree of human pressure in the catchment areas. The MP concentration was higher in autumn than in summer in all regions and stations, probably due to the seasonality of the biofouling and consequent sinking rate of particles. A weak negative correlation between the wind speed and the MP concentration was detected only in the central Gulf of Finland, and positive correlation in the shallow area near river mouth. We observed a 60-fold difference in MP concentrations during coastal downwelling/upwelling. Divergence/convergence driven by the (sub)mesoscale processes should be one of the subjects in future studies to enhance the knowledge on the MP pathways in the Baltic Sea.

Funder

Eesti Teadusagentuur

Horizon 2020 Framework Programme

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference86 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3