The baseline for micro- and mesoplastic pollution in open Baltic Sea and Gulf of Riga beach

Author:

Dimante-Deimantovica Inta,Bebrite Alise,Skudra Māris,Retike Inga,Viška Maija,Bikše Jānis,Barone Marta,Prokopovica Anda,Svipsta Sanda,Aigars Juris

Abstract

Microplastic pollution has become widespread, occurring even in areas with low anthropogenic impacts, small human populations, and low tourism intensity. Marine beach sand represents the interface between inland and marine environments and acts like a fingerprint of all the processes happening within the onshore catchment and in the sea, driven by marine hydrodynamic processes. An extensive dataset is required from different coastal ecosystems to understand microplastic pollution. Here, we set the baseline for micro- and mesoplastic pollution distribution in 24 beaches along the Latvian coastline (Northern Europe, Baltic states), filling the existing knowledge gap and contributing to the global understanding of microplastic particles presence, transport, and the processes governing its dynamics. We also highlight citizen science as a fundamental tool to support data collection and raise awareness about microplastic pollution, as samples were collected by up to 250 volunteers during organized campaigns. To improve the understanding of the driving forces responsible for plastic pollution distribution along beaches, we analyzed sand granulometry, sample location, hydrodynamic variables (waves and currents), and tourism/leisure intensity. Our results demonstrate that the semi-closed Gulf of Riga beach environment contains fewer micro- and mesoplastic particles (0.10 particles/kg dry sand) compared to the open Baltic Sea (0.16 particles/kg dry sand). For microplastic size fraction particularly, a separate cluster can be distinguished showing a higher microplastic concentration and greater presence of fibers associated with coarser beach sand in the open Baltic Sea and eastern part of the Gulf of Riga. Recreational activity was not observed to have any statistically significant effect on microplastic distribution. We have concluded that hydrodynamics is an important factor for microplastics distribution and accumulation, but the impacts are of local scale, and results vary significantly among existing studies.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference95 articles.

1. Microplastics in the Mediterranean Sea: Deposition in coastal shallow sediments, spatial variation and preferential grain size;Alomar;Mar. Environ. Res.,2016

2. Tromsø, NorwayAMAP litter and microplastics monitoring plan2021

3. High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes;Ashton;J. Geophys. Res. Earth Surf.,2006

4. Interannual and seasonal changes of water salinity in the Gulf of Riga;Berzinsh;Rybokhozyaistvennye issledovaniya,1980

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3