Marine renewable energy for Arctic observations

Author:

Branch Ruth,Ticona Rollano Fadia,Cotter Emma,McVey James R.,Cavagnaro Robert J.,Rigor Ignatius

Abstract

Arctic observations are becoming increasingly valuable as researchers investigate climate change and its associated concerns, such as decreasing sea ice and increasing ship traffic. Networks of sensors with frequent sampling capabilities are needed to run forecast models, improve navigation, and inform climate research. Sampling frequency and deployment duration are currently constrained by battery power limitations. In-situ power generation using marine renewable energy sources such as waves and currents can be used to circumvent this constraint. Wave and current resources vary spatially and temporally in the Arctic, with some locations and seasons being better suited for marine renewable energy power generation. Locations and seasons with small resources may still be able to use marine renewable energy because of the low power requirements of the instruments. In this study, we describe the wave and current resources in the Arctic, outline the electricity generation developments that are needed to utilize the resources, and suggest use cases. Wave and current energy converters developed to power observations in the Arctic could also be used to power observations at lower latitudes. Marine renewable energy has the potential to decrease dependence on batteries and improve data collection capabilities in the Arctic; however, this would require the development of new low power technologies that can operate in extreme Arctic environments.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference46 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3