Modeling Sea Ice Effects for Wave Energy Resource Assessments

Author:

Branch Ruth,García-Medina GabrielORCID,Yang Zhaoqing,Wang TaipingORCID,Ticona Rollano Fadia,Hosekova LuciaORCID

Abstract

Wave-generated power has potential as a valuable coastal resource, but the wave climate needs to be mapped for feasibility before wave energy converters are installed. Numerical models are used for wave resource assessments to quantify the amount of available power and its seasonality. Alaska is the U.S. state with the longest coastline and has extensive wave resources, but it is affected by seasonal sea ice that dampens the wave energy and the full extent of this dampening is unknown. To accurately characterize the wave resource in regions that experience seasonal sea ice, coastal wave models must account for these effects. The aim of this study is to determine how the dampening effects of sea ice change wave energy resource assessments in the nearshore. Here, we show that by combining high-resolution sea ice imagery with a sea ice/wave dampening parameterization in an unstructured grid, the Simulating Waves Nearshore (SWAN) model improves wave height predictions and demonstrates the extent to which wave power decreases when sea ice is present. The sea ice parametrization decreases the bias and root mean square errors of wave height comparisons with two wave buoys and predicts a decrease in the wave power of up to 100 kW/m in areas around Prince William Sound, Alaska. The magnitude of the improvement of the model/buoy comparison depends on the coefficients used to parameterize the wave–ice interaction.

Funder

U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Water Power Technologies Office

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3