Accuracy of Otolith Oxygen Isotope Records Analyzed by SIMS as an Index of Temperature Exposure of Wild Icelandic Cod (Gadus morhua)

Author:

von Leesen Gotje,Bardarson Hlynur,Halldórsson Sæmundur Ari,Whitehouse Martin J.,Campana Steven E.

Abstract

Global warming is increasing ocean temperatures, forcing marine organisms to respond to a suite of changing environmental conditions. The stable oxygen isotopic composition of otoliths is often used as an index of temperature exposure, but the accuracy of the resulting temperature reconstructions in wild, free-swimming Atlantic cod (Gadus morhua) has never been groundtruthed. Based on temperatures from data storage tags (DST) and corresponding salinity values, the stable oxygen isotope (δ18O) value was predicted for each month of tagging and compared with δ18Ootolith values measured in situ with secondary ion mass spectrometry (SIMS). Paired-sample Wilcoxon tests were applied to compare measured and predicted δ18O values. The difference between measured and predicted mean and maximum δ18Ootolith values was not significant, suggesting a good correspondence between SIMS-measured and DST-predicted δ18Ootolith values. However, SIMS-measured and predicted minimum δ18Ootolith values were significantly different (all samples: p < 0.01, coastal and frontal cod: p < 0.05), resulting in overestimation of maximum temperatures. Our results confirm that otoliths are well-suited as proxies for mean ambient temperature reconstructions. A possible matrix effect and the absence of a reliable aragonite standard for SIMS measurements appeared to cause a small divergence between measured and predicted δ18Ootolith values, which affected the estimation accuracy of absolute temperature. However, relative temperature changes were accurately estimated by SIMS-analyzed δ18Ootolith values.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3