Natal origin of Pacific bluefin tuna Thunnus orientalis determined by SIMS oxygen isotope analysis of otoliths

Author:

Hane YulinaORCID,Ushikubo Takayuki,Yokoyama Yusuke,Miyairi Yosuke,Kimura Shingo

Abstract

Accurate understanding of changing population dynamics associated with climate change is critical for managing highly migratory fish species. However, long-term data on population dynamics and the resulting recruitment variability is still lacking for many species, making it difficult to predict and integrate the effects of ocean warming into management schemes. In this study, high-resolution stable oxygen isotope (δ18O) analysis was performed on the otoliths of adult Pacific bluefin tuna Thunnus orientalis using secondary ion mass spectrometry (SIMS) to determine the natal origin of an individual fish. The core δ18Ootolith corresponding to the larval stage greatly varied among the individuals, indicating that the larvae experienced a wide range of thermal environments. The non-hierarchical cluster analysis performed on the core δ18Ootolith grouped fish into those with higher δ18Ootolith (lower temperature) and those with lower δ18Ootolith (higher temperature), most likely representing relative temperature difference experienced between fish born in the Sea of Japan and in the Nansei Islands area. The Nansei Islands area cluster showed more variability in the early otolith growth indicating a longer spawning season, which is consistent with the observed longer spawning duration in this area. The absolute temperature estimates based on the SIMS-measured core δ18Ootolith were significantly higher than those expected from sea surface temperature data, suggesting the effects of matrix-related bias on the temperature offsets. The relative temperature difference, however, matched well with the known spawning temperature range of the two spawning grounds. The recruitment contribution from each spawning ground (all year-classes pooled, n = 51) was 45% in the Sea of Japan and 55% in the Nansei Islands area. Overall, this study demonstrated the effectiveness of SIMS δ18Ootolith analysis for investigating the natal origin of fish and its potential application in fish population dynamics studies.

Funder

Japan Society for the Promotion of Science

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3