Determination of temperature-dependent otolith oxygen stable isotope fractionation on chum salmon Oncorhynchus keta based on rearing experiment

Author:

Gou Yuxiao,Higuchi Tomihiko,Iino Yuki,Nagasaka Tsuyoshi,Shimizu Yuichi,Shirai Kotaro,Kitagawa Takashi

Abstract

Reconstruction of water temperatures experienced by marine fishes using otolith oxygen stable isotopes (δ18O) as natural thermometers has been proven to be a useful approach for estimating migration routes or movement patterns. This method is based on the mechanism that the equilibrium fractionation of δ18Ootolith against ambient water exhibits a species-specific thermal sensitivity during the process of otolith aragonitic CaCO3 precipitation. In this study, a laboratory-controlled rearing experiment was conducted to determine the temperature dependency of δ18O fractionation on the anadromous fish species, chum salmon (Oncorhynchus keta), of which the detailed migration routes have not been elucidated yet. To test that temperature was the only factor affecting δ18Ootolith fractionation, this study ensured a relatively stable rearing condition, evaluated the isotope composition of the rearing water, and analyzed carbon isotope (δ13Cotolith) to examine the potential effect of kinetic and metabolic isotopic fractionations. The δ18Ootolith fractionation equation on chum salmon was thereby determined within a temperature range of 9–20°C and was indistinguishable from the equation of synthetic aragonite; The δ13Cotolith was affected by both physiological processes and δ13CDIC; In lower temperatures settings, both oxygen and carbon isotopes depleted simultaneously. This study suggests that the chum salmon species-specific oxygen isotope fractionation equation could be used on reconstruction of temperature history and also throw insights into understanding the incorporation of oxygen and carbon sources during calcification process for otoliths.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Corporation

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3