The structure, characterization and dual-activity of exopolysaccharide produced by Bacillus enclensis AP-4 from deep-sea sediments

Author:

Hu Xin,Li Fengshu,Zhang Xiuli,Pan Yaping,Lu Jinren,Li Yiming,Bao Mutai

Abstract

In recent years, the exopolysaccharide (EPS) produced by deep-sea bacteria has attracted the interest of various researchers. In the present study, we have explored the properties and structure of a novel exopolysaccharide (called BPS) produced by Bacillus enclensis AP-4 from deep-sea sediments. The maximum yield of BPS was 4.23 ± 0.17 g L−1 in a 2216E modified medium. 1H NMR studies of the purified BPS displayed α and β-configuration sugar residues, including mannose, glucosamine, glucose, galactose, and xylose in a molar ratio of 1.00: 0.09: 0.04: 0.09: 0.07. BPS showed a molecular weight of 23,434 Da and was abundant in hydroxyl and amino residues. In addition, BPS exhibited a rod-like structure with a rough surface and was dominated by C, N, and O elements. The exopolysaccharide demonstrated remarkable thermal stability, high degradation temperature, and excellent emulsification capacity compared to most reported exopolysaccharides. Moreover, BPS displayed better quenching activities against the four radicals, which provided favorable protection for the strain. Finally, the freezing experiment investigated the cryoprotective effect of BPS on E. coli and S. aureus. BPS effectively improved the cell survival ratio and maintained the activity of Na+/K+-ATPase, which facilitates culture preservation. To the best of our knowledge, our work is the first report suggesting that marine exopolysaccharide has dual-activity. This work presents the foundation for the analysis of the structure and properties of exopolysaccharides produced by deep-sea bacteria.

Funder

Fundamental Research Funds for the Central Universities

Major Scientific and Technological Innovation Project of Shandong Province

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3