Abstract
Exopolysaccharide (EPS) has been known to be a good cryoprotective agent for bacteria, but it has not been tested for cyanobacteria and eukaryotic microalgae. In this study, we used EPS extracted from a glacier bacterium as a cryoprotective agent for the cryopreservation of three unicellular cyanobacteria and two eukaryotic microalgae. Different concentrations of EPS (10%, 15%, and 20%) were tested, and the highest concentration (20%) of EPS yielded the best growth recovery for the algal strains we tested. We also compared EPS with 5% dimethyl sulfoxide (DMSO) and 10% glycerol for the cryopreservation recovery. The growth recovery for the microalgal strains after nine months of cryopreservation was better than 5% DMSO, a well-known cryoprotectant for microalgae. A poor recovery was recorded for all the tested strains with 10% glycerol as a cryoprotective agent. The patterns of growth recovery for most of these strains were similar after 5 days, 15 days, and 9 months of cryopreservation. Unlike common cryopreservants such as DMSO or methanol, which are hazardous materials, EPS is safe to handle. We demonstrate that the EPS from a psychrotrophic bacterium helped in the long-term cryopreservation of cyanobacteria and microalgae, and it has the potential to be used as natural cryoprotective agent for other cells.
Subject
Virology,Microbiology (medical),Microbiology
Reference41 articles.
1. Long-term storage of tissues by cryopreservation: critical issues
2. Maintenance of Microorganisms and Cultured Cells: A Manual of Laboratory Methods;Dando,1991
3. Cyanobacteria: An Economic Perspective;Day,2013
4. Effects of cryopreservation on viability and functional stability of an industrially relevant alga
5. Maintenance of actively metabolizing microalgal cultures;Lorenz;Algal Cult. Tech.,2005
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献