Adaptation Mechanisms in Human–Agent Interaction: Effects on User’s Impressions and Engagement

Author:

Biancardi Beatrice,Dermouche Soumia,Pelachaud Catherine

Abstract

Adaptation is a key mechanism in human–human interaction. In our work, we aim at endowing embodied conversational agents with the ability to adapt their behavior when interacting with a human interlocutor. With the goal to better understand what the main challenges concerning adaptive agents are, we investigated the effects on the user’s experience of three adaptation models for a virtual agent. The adaptation mechanisms performed by the agent take into account the user’s reaction and learn how to adapt on the fly during the interaction. The agent’s adaptation is realized at several levels (i.e., at the behavioral, conversational, and signal levels) and focuses on improving the user’s experience along different dimensions (i.e., the user’s impressions and engagement). In our first two studies, we aim to learn the agent’s multimodal behaviors and conversational strategies to dynamically optimize the user’s engagement and impressions of the agent, by taking them as input during the learning process. In our third study, our model takes both the user’s and the agent’s past behavior as input and predicts the agent’s next behavior. Our adaptation models have been evaluated through experimental studies sharing the same interacting scenario, with the agent playing the role of a virtual museum guide. These studies showed the impact of the adaptation mechanisms on the user’s experience of the interaction and their perception of the agent. Interacting with an adaptive agent vs. a nonadaptive agent tended to be more positively perceived. Finally, the effects of people’s a priori about virtual agents found in our studies highlight the importance of taking into account the user’s expectancies in human–agent interaction.

Funder

Horizon 2020

Agence Nationale de La Recherche

Publisher

Frontiers Media SA

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive virtual agent: Design and evaluation for real-time human-agent interaction;International Journal of Human-Computer Studies;2024-10

2. ACE: how Artificial Character Embodiment shapes user behaviour in multi-modal interaction;INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION;2023-10-09

3. IAVA;Proceedings of the 23rd ACM International Conference on Intelligent Virtual Agents;2023-09-19

4. Communication accommodation theory: Past accomplishments, current trends, and future prospects;Language Sciences;2023-09

5. Modeling Emerging Interpersonal Synchrony and its Related Adaptive Short-Term Affiliation and Long-Term Bonding: A Second-Order Multi-Adaptive Neural Agent Model;International Journal of Neural Systems;2023-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3