Modeling Emerging Interpersonal Synchrony and its Related Adaptive Short-Term Affiliation and Long-Term Bonding: A Second-Order Multi-Adaptive Neural Agent Model

Author:

Hendrikse Sophie C. F.12,Treur Jan3,Koole Sander L.1

Affiliation:

1. Amsterdam Emotion Regulation Lab, Department of Clinical Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

2. Methodology and Statistics Research Unit, Institute of Psychology, Leiden University, Leiden, The Netherlands

3. Social AI Group, Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Abstract

When people interact, their behavior tends to become synchronized, a mutual coordination process that fosters short-term adaptations, like increased affiliation, and long-term adaptations, like increased bonding. This paper addresses for the first time how such short-term and long-term adaptivity induced by synchronization can be modeled computationally by a second-order multi-adaptive neural agent model. It addresses movement, affect and verbal modalities and both intrapersonal synchrony and interpersonal synchrony. The behavior of the introduced neural agent model was evaluated in a simulation paradigm with different stimuli and communication-enabling conditions. Moreover, in this paper, mathematical analysis is also addressed for adaptive network models and their positioning within the landscape of adaptive dynamical systems. The first type of analysis addressed shows that any smooth adaptive dynamical system has a canonical representation by a self-modeling network. This implies theoretically that the self-modeling network format is widely applicable, which also has been found in many practical applications using this approach. Furthermore, stationary point and equilibrium analysis was addressed and applied to the introduced self-modeling network model. It was used to obtain verification of the model providing evidence that the implemented model is correct with respect to its design specifications.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3