Comparative Investigation of Fullerene PC71BM and Non-fullerene ITIC-Th Acceptors Blended With P3HT or PBDB-T Donor Polymers for PV Applications

Author:

Otieno Francis,Kotane Lesias,Airo Mildred,Erasmus Rudolph M.,Billing Caren,Wamwangi Daniel,Billing David G.

Abstract

Fundamentally, organic solar cells (OSCs) with a bulk-heterojunction active layer are made of at least two electronically dissimilar molecules, in which photoabsorption in one (donor) generates Frenkel excitons. The formation of free charge carriers emerge after exciton dissociation at the donor:acceptor interface. In the past decade, most of the progress in enhanced device performance has been steered by the rapid development of novel donor and acceptor materials and on device engineering. Among these donor materials, regioregular poly(3-hexylthiophene) (P3HT) produced better performance despite the mismatch of its absorption coefficient with the solar emission spectrum. Comparatively the donor PBDB-T exhibits an outstanding absorption coefficient with a deeper-lying highest occupied molecular orbital (HOMO) level. Previously most of the efficient acceptors were based on fullerene molecules characterized by limited photoabsorption and stability. In contrast, the recently developed non-fullerene OSCs have a tunable absorption spectrum and exhibit improved stability. In this work, we explore the fundamental sources of the differences in the device performance for different blend compositions made of fullerene derivative (PC71BM) and non-fullerene (ITIC-Th) when paired with the polymer donors P3HT and PBDB-T. The characteristic changes of the optical properties of these blends and their roles in device performance are also investigated. We also studied charge generation where PBDB-T:PC71BM showed the highest maximum exciton generation rate (Gmax) of 3.22 × 1028 s–1 while P3HT: ITIC-Th gave the lowest (0.96 × 1028 s–1). Also noted, PC71BM based counterparts gave better charge transfer capabilities as seen from the lower PL quenching and higher charge carrier dissociation plus collection probability P(E,T) derived from a plot of Jph/Jsat ratio under short-circuit conditions against the effective voltages.

Funder

University of the Witwatersrand, Johannesburg

Global Challenges Research Fund

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3