Effects of Solvent Additive and Micro-Patterned Substrate on the Properties of Thin Films Based on P3HT:PC70BM Blends Deposited by MAPLE

Author:

Socol MarcelaORCID,Preda Nicoleta,Breazu CarmenORCID,Petre Gabriela,Stanculescu AncaORCID,Stavarache IonelORCID,Popescu-Pelin Gianina,Stochioiu AndreiORCID,Socol GabrielORCID,Iftimie SorinaORCID,Thanner Christine,Rasoga OanaORCID

Abstract

Lately, there is a growing interest in organic photovoltaic (OPV) cells due to the organic materials’ properties and compatibility with various types of substrates. However, their efficiencies are low relative to the silicon ones; therefore, other ways (i.e., electrode micron/nanostructuring, synthesis of new organic materials, use of additives) to improve their performances are still being sought. In this context, we studied the behavior of the common organic bulk heterojunction (P3HT:PC70BM) deposited by matrix-assisted pulsed laser evaporation (MAPLE) with/without 0.3% of 1,8-diiodooctane (DIO) additive on flat and micro-patterned ITO substrates. The obtained results showed that in the MAPLE process, a small quantity of additive can modify the morphology of the organic films and decrease their roughness. Besides the use of the additive, the micro-patterning of the electrode leads to a greater increase in the absorption of the studied photovoltaic structures. The inferred values of the filling factors for the measured cells in ambient conditions range from 19% for the photovoltaic structures with no additive and without substrate patterning to 27% for the counterpart structures with patterning and a small quantity of additive.

Funder

Romanian Ministry of Research, Innovation and Digitalization, CNCS-UEFISCDI

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3