Conductive MoO3–PEDOT:PSS Composite Layer in MoO3/Au/MoO3–PEDOT:PSS Multilayer Electrode in ITO-Free Organic Solar Cells

Author:

Maniruzzaman Md12ORCID,Abdur Rahim23ORCID,Kuddus Sheikh Md Abdul24ORCID,Singh Son2ORCID,Lee Jaegab2ORCID

Affiliation:

1. Department of Chemistry, Khulna University of Engineering and Technology, Khulna 19203, Bangladesh

2. School of Advanced Materials Engineering, Kookmin University, Seoul 136-702, Republic of Korea

3. Institute of Fuel Research and Development, Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh

4. Łukasiewicz Research Network-PORT Polish Center for Technology Development, 54-066 Wrocław, Poland

Abstract

The solution-processed and conductive MoO3–PEDOT:PSS (Mo–PPSS) composite layer in a MoO3/Au/MoO3–PEDOT:PSS (MoAu/Mo–PPSS) multilayer electrode in ITO-free organic solar cells (OSCs) was optimized in terms of electrical conductivity, interfacial contact quality, work function, and process wettability of the conductive composite thin film. The surface composition of the PEDOT:PSS film onto different electrodes was observed by using X-Ray Photoelectron Spectroscopy. The PEDOT:PSS-MoO3 composite protects the dissolution of individual MoO3 with PEDOT:PSS, which was confirmed by Auger Electron Spectroscopy. The UV-Visible spectroscopy showed that the photoactive layer of P3HT:PCBM absorbs in the wavelength range of 300–650 nm with the maximum absorption at 515 nm (2.40 eV). The device performance of 3.97% based on an MoAu/Mo–PPSS conductive composite electrode exhibited comparable enhancement and only 6% enhancement compared to an ITO-based electrode (3.91%). The enhancement of device efficiency was mainly due to relatively higher conductivity, a low work function of the conductive metal oxide-metal-metal oxide/polymer composite, and an enhancement of interfacial contact quality between the hole transport layer (HTL) and the mixed organic polymeric photoactive layer. These results indicate that the solution-processable Mo–PPSS conductive composite layer of the MoO3/Au multilayer electrode can replace the ITO-based electrode in the bulk of heterojunction organic photovoltaics (OPVs).

Funder

the Ministry of Science and ICT of the Republic of Korea

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3