Regional Ultra-Short-Term Wind Power Combination Prediction Method Based on Fluctuant/Smooth Components Division

Author:

Li Yalong,Yan Licheng,He Hao,Zha Wenting

Abstract

When multiple scattered wind farms are connected to the power grid, the meteorological and geographic information data used for power prediction of a single wind farm are not suitable for the regional wind power prediction of the dispatching department. Therefore, based on the regional wind power historical data, this study proposes a combined prediction method according to data decomposition. Firstly, the original sequence processed by the extension methods is decomposed into several regular components by Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN). All the components are classified into two categories: fluctuant components and smooth components. Then, according to the characteristics of different data, the long short-term memory (LSTM) network and autoregressive integrated moving average (ARIMA) model are used to model the fluctuant components and the smooth components, respectively, and obtain the predicted values of each component. Finally, the predicted data of all components are accumulated, which is the final predicted result of the regional ultra-short-term wind power. The feasibility and accuracy of this method are verified by the comparative analysis.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3